Mathematics 222B Lecture 2 Notes

Daniel Raban

January 20, 2022

1 A Priori Estimates and Approximation Theorems

1.1 Relationship between a priori estimates, existence, and uniqueness

Last time, we were investigating the question "Why study Sobolev spaces as Banach spaces?" We made a digression into functional analysis:

If X and Y are Banach spaces and $P: X \to Y$ is bounded and linear, we had 2 concerns:

- (Existence) Given $f \in T$, does there exists a $u \in X$ such that Pu = f?
- (Uniqueness) Given $u \in X$ such that Pu = 0, does u = 0?

These two problems are related to each other by duality.

Remark 1.1. Here is a concrete thing to keep in mind: Often, we prove a priori estimates for a PDE, i.e. if $u \in X$ with Pu = f, then $||u||_X \leq C||f||_Y$.

Proposition 1.1. Let X, Y be Banach spaces, and let $P : X \to Y$ be a bounded, linear operator. Denote by $P^* : Y^* \to X^*$ the adjoint of P, i.e. $\langle v, Pu \rangle = \langle P^*v, u \rangle$ for all $u \in X, v \in Y^*$. Suppose there exists a constant C > 0 such that $||u||_X \leq C||Pu||_Y$ for all $u \in X$. Then

- 1. (Uniqueness for Pu = f) If $u \in X$ and Pu = 0, then u = 0.
- 2. (Existence for $P^*v = g$) For all $g \in X^*$, there exists a $v \in Y^*$ such that $P^*v = g$ and $||v||_{Y^*} \leq C||g||_{X^*}$.

Proof. Here is the proof of 2, via the Hahn-Banach theorem. We want to find $v \in Y^*$ such that $P^*v = g$, which is equivalent to $\langle P^*v, u \rangle = \langle g, u \rangle$ for all $u \in X$. The left side is $\langle v, Pu \rangle$, so we will start with a subspace of elements of the form Pu.

Define $\ell: P(X) \to \mathbb{R}$ by the relation

$$\ell(Pu) = \langle g, u \rangle.$$

Note that since P is injective, this ℓ is well-defined. This is bounded because or $||Pu||_Y \leq 1$,

$$\ell(Pu)| = |\langle g, u \rangle| \le ||g||_{X^*} ||u||_X$$
$$\le C||g||_{X^*} ||Pu||_Y$$
$$\le C||g||_{X^*}$$

So Hahn-Banach says that there is a $v \in Y^*$ such that

$$\langle v, Pu \rangle = \ell(pu) = \langle g, u \rangle \qquad \forall u \in X$$

and $||v||_{Y^*} \le C ||g||_{X^*}$.

What about existence for the original problem Pu = f? Let us take an easy way out and assume that X is **reflexive** $(X \to (X^*)^*$ sending $u \mapsto (u \mapsto \langle v, u \rangle)$ is an isomorphism).

Proposition 1.2. Let X, Y be Banach spaces, and let $P : X \to Y$ be a bounded, linear operator. Suppose $||v_{Y^*}|| \leq C ||P^*v||_{X^*}$. Then

- 1. (Uniqueness for $P^*v = g$) If $v \in Y^*$ and $P^*v = 0$, then v = 0.
- 2. (Existence for Pu = f) For all $f \in Y$, there exists a $u \in X$ such that Pu = f and $||u||_X \leq C||f||_Y$.

Proof. Same as before. Construct $u \in X$ by constructing a bounded linear functional on X^* (because $X = (X^*)^*$ by reflexivity.

Remark 1.2. All Sobolev spaces $W_0^{k,p}(U)$ with 1 are reflexive.

Remark 1.3.

$$(\operatorname{ran} P)^{\perp} = \ker P^*, \quad \ker P =^{\perp} (\operatorname{ran} P^*).$$

Here, we mean annihilators.

Definition 1.1. Given $U \subseteq Y$, the **annihilator** of U is $U^{\perp} = \{v \in Y^* : \langle v, f \rangle = 0 \forall f \in U\}$. Given $V \subseteq X^*$, the **annihilator** of U is $U^{\perp} = \{u \in X : \langle g, u \rangle = 0 \forall g \in V\}$.

As a consequence, if ker $P^* = \{0\}$, then by Hahn-Banach,

$$(\operatorname{ran} P)^{\perp} = \{0\} \iff \overline{\operatorname{ran} P} = Y$$

In the finite dimensional case, $\overline{\operatorname{ran} P} = \operatorname{ran} P$. Therefore, we get the well-known fact from linear algebra concerning the solvability of the problem Ax = b with A a possibly non-square matrix:

(for all b, there exists an x such that Ax = b) $\iff (A^*y = 0 \implies y = 0)$,

(for all c, there exists an y such that $A^*y = c$) $\iff (Ax = 0 \implies x = 0)$.

However, in the infinite dimensional case, $\overline{\operatorname{ran} P} = \operatorname{ran} P$, so we can think of the annihilator as measuring how close these are.

Remark 1.4 (Qualitative vs quantitative). There is no loss of generality in deriving existence for Pu = f from the quantitative bound $||v||_{Y^*} \leq C ||P^*v||_{X^*}$.

Proposition 1.3. Let X, Y be Banach spaces and $P : X \to Y$ be a bounded linear operator. If P(X) = T, then there exists some C > 0 such that $||v||_{Y^*} \le C||P^*v||_{X^*}$.

Proof. By the open mapping theorem, $P(B_X)$, the image of the unit ball in X, is open and contains the origin. So there exists a C > 0 such that $P(B_X) \supseteq cB_Y$. Then

$$\begin{split} \|P^*v\|_{X^*} &= \sup_{u:\|u\|_X \le 1} |\langle P^*v, u \rangle| \\ &= \sup_{u \in \overline{B_X}} |\langle v, Pu \rangle| \\ &= \sup_{f \in P(\overline{B_X})} |\langle v, f \rangle| \\ &\geq \sup_{f \in cB_Y} |\langle v, f \rangle| \\ &\geq C \|v\|_{Y^*}. \end{split}$$

Example 1.1. Let's try to solve the 1-dimensional Laplace equation

$$\begin{cases} -u'' = f & \text{in } (0,1) \\ u = 0 & \text{at } x = 0, 1. \end{cases}$$

We will investigate solvability in $H_0^1((0,1)) = \overline{C_c^{\infty}(0,1)}^{\|\cdot\|_{H^1}}$, where $\|u\|_{H^1}^2 = \|u_{L^2}^2 + \|u'\|_{L^2}^2$. Recall that $(H_0^1((0,1)))^* = H^{-1}(0,1)$. Then we have Pu = -u'' with domain $X = H_0^1((0,1))$ and codomain $Y = H^{-1}(0,1)$.

We claim that if Pu = f for some $u \in X$ then $||u||_X \leq C||f||_Y$. This means that if $u \in H_0^1(0,1)$ satisfies the equation -u'' = f, then $||u||_{H^1} \leq C||f||_{H^{-1}}$.

Proof. To prove this bound, it suffices by density to consider $u \in C_c^{\infty}((0,1))$. Multiply both sides by u and integrate:

$$\int f u \, dx = \int -u'' u \, dx$$

Since $u \in C_c^{\infty}((0,1))$ there are no boundary terms. So we may integrate by parts.

$$=\int (u')^2\,dx$$

But how about $||u||_{L^2}$? Use the fact that u vanishes on the boundary:

$$u(x) = \int_0^x u'(x) \, dx.$$

Then for any $x \in (0, 1)$, we can say

$$|u(x)| \leq \int_0^1 |u'(x')| \, dx' \overset{\text{Cauchy-Schwarz}}{\leq} \|u'\|_{L^2}^2.$$

We now have that

$$\begin{aligned} \|u\|_{H^1}^2 &\leq C |\langle f, u \rangle| \\ &\leq C \|f\|_{H^{-1}} \|u\|_{H^1}. \end{aligned}$$

Cancelling one factor of $||u||_{H^1}$ on each side gives $||u||_{H^1} \leq C ||f||_{H^{-1}}$.

Combined with proposition 1 gives us that if -u'' = 0 and $u \in H_0^1((0,1))$, then u = 0. To use proposition 2, we need to compute P^* :

$$\langle P^*v, u \rangle = \langle v, Pu \rangle \qquad \forall v \in (H^{-1})^*, u \in H^1_0.$$

Note that by reflexivity of H_0^1 , $(H^{-1})^* = H_0^1$. Let's write this out:

$$\langle v, Pu \rangle = \int_0^1 v(-u'') \, dx$$

To use integration by parts, do another density argument.

$$= \int_0^1 v'u' \, dx \qquad (v \in H_0^1)$$
$$= \int_0^1 -v''u \, dx \qquad (u \in H_0^1)$$
$$= \langle P^*v, u \rangle.$$

This tells us that $P^*v = -v''$ with domain $Y^* = H_0^1((0, 1))$ and codomain $X^* = H_0^{-1}((0, 1))$, so the problem is self-dual. So we get existence: for all $f \in H^{-1}$, there is a $u \in H_0^1$ such that Pu = f.

This is a pretty high-powered approach that works for a variety of problems. To prove quantitative estimates, we will in general use **Poincaré inequities**.

1.2 Approximation by smooth functions and smooth partition of unity

There are two main tools we will use: convolution and mollifiers.

Lemma 1.1. Let φ be smooth, compactly supported, and have $\int \varphi \, dx = 1$. Let $u \in L^p(\mathbb{R}^d)$ with $1 \leq p < \infty$. Denote **mollifiers** $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^d} \varphi(x/\varepsilon)$ (so $\int \varphi_{\varepsilon}$). Then

$$\|\varphi_{\varepsilon}u - u\|_{L^p} \xrightarrow{\varepsilon \to 0} 0,$$

where $\varphi_{\varepsilon} * u = \int \varphi_{\varepsilon}(x-y)u(y) \, dy$.

Proof. The key ingredient is the continuity of the translation operator on L^p . Define for $z \in \mathbb{R}^d$ and $u \in L^p$ the translation operator $\tau_z u(x) = u(x-z)$. Then

$$\lim_{|z| \to 0} \|\tau_z u - u\|_{L^p} = 0,$$

which you can check. Now

$$\varphi_{\varepsilon} * u(x) - u(x) = \int u(x - y)\varphi_{\varepsilon}(y) \, dy - u(x)$$

Since $\int \varphi_{\varepsilon} = 1$,

$$= \int (u(x-y) - u(x))\varphi_{\varepsilon}(y)\,dy.$$

Taking the L^p norm, we have

$$\begin{aligned} \|\varphi_{\varepsilon} * u(x) - u(x)\|_{L^{p}} &= \left\| \int (u(x-y) - u(x))\varphi_{\varepsilon}(y) \, dy \right\|_{L^{p}} \\ &\leq \int \|u(\cdot - y) - u(\cdot)\|_{L^{p}} |\varphi_{\varepsilon}(y)| \, dy \end{aligned}$$

Since φ has compact support, supp $\varphi_{\varepsilon} \to \{0\}$ as $\varepsilon \to \{0\}$. Thus, the integrand goes to 0 as $\varepsilon \to 0$. So we may apply the dominated convergence theorem to get

$$\xrightarrow{\varepsilon \to 0} 0.$$

This approximation is useful because $\varphi_{\varepsilon} * u$ is smooth. Another useful tool is a smooth partition of unity:

Lemma 1.2. Suppose $\{U_{\alpha}\}_{\alpha \in A}$ be an open covering of U in \mathbb{R}^d . There exists a **smooth** partition of unity $\{\chi_{\alpha}\}_{\alpha \in A}$ on U subordinate to $\{U_{\alpha}\}_{\alpha \in A}$, *i.e.*

- 1. $\sum_{\alpha} \chi_{\alpha}(x) = 1$ on U and for all $x \in U$ there exist only finitely many nonzero $\chi_{\alpha}(x)$
- 2. supp $\chi_{\alpha} \subseteq U_{\alpha}$
- 3. χ_{α} is smooth.

Proof. Start from a continuous partition of unity and apply the previous lemma to approximate by smooth functions. \Box