Mathematics 222B Lecture 2 Notes

Daniel Raban

January 20, 2022

1 A Priori Estimates and Approximation Theorems

1.1 Relationship between a priori estimates, existence, and uniqueness

Last time, we were investigating the question "Why study Sobolev spaces as Banach spaces?" We made a digression into functional analysis:

If X and Y are Banach spaces and $P: X \rightarrow Y$ is bounded and linear, we had 2 concerns:

- (Existence) Given $f \in T$, does there exists a $u \in X$ such that $P u=f$?
- (Uniqueness) Given $u \in X$ such that $P u=0$, does $u=0$?

These two problems are related to each other by duality.
Remark 1.1. Here is a concrete thing to keep in mind: Often, we prove a priori estimates for a PDE, i.e. if $u \in X$ with $P u=f$, then $\|u\|_{X} \leq C\|f\|_{Y}$.

Proposition 1.1. Let X, Y be Banach spaces, and let $P: X \rightarrow Y$ be a bounded, linear operator. Denote by $P^{*}: Y^{*} \rightarrow X^{*}$ the adjoint of P, i.e. $\langle v, P u\rangle=\left\langle P^{*} v, u\right\rangle$ for all $u \in X, v \in Y^{*}$. Suppose there exists a constant $C>0$ such that $\|u\|_{X} \leq C\|P u\|_{Y}$ for all $u \in X$. Then

1. (Uniqueness for $P u=f$) If $u \in X$ and $P u=0$, then $u=0$.
2. (Existence for $P^{*} v=g$) For all $g \in X^{*}$, there exists a $v \in Y^{*}$ such that $P^{*} v=g$ and $\|v\|_{Y^{*}} \leq C\|g\|_{X^{*}}$.

Proof. Here is the proof of 2 , via the Hahn-Banach theorem. We want to find $v \in Y^{*}$ such that $P^{*} v=g$, which is equivalent to $\left\langle P^{*} v, u\right\rangle=\langle g, u\rangle$ for all $u \in X$. The left side is $\langle v, P u\rangle$, so we will start with a subspace of elements of the form $P u$.

Define $\ell: P(X) \rightarrow \mathbb{R}$ by the relation

$$
\ell(P u)=\langle g, u\rangle .
$$

Note that since P is injective, this ℓ is well-defined. This is bounded because or $\|P u\|_{Y} \leq 1$,

$$
\begin{aligned}
\ell(P u)|=|\langle g, u\rangle| & \leq\|g\|_{X^{*}}\|u\|_{X} \\
& \leq C\|g\|_{X^{*}}\|P u\|_{Y} \\
& \leq C\|g\|_{X^{*}}
\end{aligned}
$$

So Hahn-Banach says that there is a $v \in Y^{*}$ such that

$$
\langle v, P u\rangle=\ell(p u)=\langle g, u\rangle \quad \forall u \in X
$$

and $\|v\|_{Y^{*}} \leq C\|g\|_{X^{*}}$.
What about existence for the original problem $P u=f$? Let us take an easy way out and assume that X is reflexive $\left(X \rightarrow\left(X^{*}\right)^{*}\right.$ sending $u \mapsto(u \mapsto\langle v, u\rangle)$ is an isomorphism $)$.

Proposition 1.2. Let X, Y be Banach spaces, and let $P: X \rightarrow Y$ be a bounded, linear operator. Suppose $\left\|v_{Y^{*}}\right\| \leq C\left\|P^{*} v\right\|_{X^{*}}$. Then

1. (Uniqueness for $P^{*} v=g$) If $v \in Y^{*}$ and $P^{*} v=0$, then $v=0$.
2. (Existence for $P u=f$) For all $f \in Y$, there exists a $u \in X$ such that $P u=f$ and $\|u\|_{X} \leq C\|f\|_{Y}$.

Proof. Same as before. Construct $u \in X$ by constructing a bounded linear functional on X^{*} (because $X=\left(X^{*}\right)^{*}$ by reflexivity.

Remark 1.2. All Sobolev spaces $W_{0}^{k, p}(U)$ with $1<p<\infty$ are reflexive.
Remark 1.3.

$$
(\operatorname{ran} P)^{\perp}=\operatorname{ker} P^{*}, \quad \operatorname{ker} P=^{\perp}\left(\operatorname{ran} P^{*}\right)
$$

Here, we mean annihilators.
Definition 1.1. Given $U \subseteq Y$, the annihilator of U is $U^{\perp}=\left\{v \in Y^{*}:\langle v, f\rangle=0 \forall f \in U\right\}$. Given $V \subseteq X^{*}$, the annihilator of U is $U^{\perp}=\{u \in X:\langle g, u\rangle=0 \forall g \in V\}$.

As a consequence, if $\operatorname{ker} P^{*}=\{0\}$, then by Hahn-Banach,

$$
(\operatorname{ran} P)^{\perp}=\{0\} \Longleftrightarrow \overline{\operatorname{ran} P}=Y
$$

In the finite dimensional case, $\overline{\operatorname{ran} P}=\operatorname{ran} P$. Therefore, we get the well-known fact from linear algebra concerning the solvability of the problem $A x=b$ with A a possibly non-square matrix:
(for all b, there exists an x such that $A x=b) \Longleftrightarrow\left(A^{*} y=0 \Longrightarrow y=0\right)$,
(for all c, there exists an y such that $\left.A^{*} y=c\right) \Longleftrightarrow(A x=0 \Longrightarrow x=0)$.
However, in the infinite dimensional case, $\overline{\operatorname{ran} P}=\operatorname{ran} P$, so we can think of the annihilator as measuring how close these are.

Remark 1.4 (Qualitative vs quantitative). There is no loss of generality in deriving existence for $P u=f$ from the quantitative bound $\|v\|_{Y^{*}} \leq C\left\|P^{*} v\right\|_{X^{*}}$.

Proposition 1.3. Let X, Y be Banach spaces and $P: X \rightarrow Y$ be a bounded linear operator. If $P(X)=T$, then there exists some $C>0$ such that $\|v\|_{Y^{*}} \leq C\left\|P^{*} v\right\|_{X^{*}}$.

Proof. By the open mapping theorem, $P\left(B_{X}\right)$, the image of the unit ball in X, is open and contains the origin. So there exists a $C>0$ such that $P\left(B_{X}\right) \supseteq c B_{Y}$. Then

$$
\begin{aligned}
\left\|P^{*} v\right\|_{X^{*}} & =\sup _{u:\|u\|_{X} \leq 1}\left|\left\langle P^{*} v, u\right\rangle\right| \\
& =\sup _{u \in \overline{B_{X}}}|\langle v, P u\rangle| \\
& =\sup _{f \in P\left(\overline{B_{X}}\right)}|\langle v, f\rangle| \\
& \geq \sup _{f \in c B_{Y}}|\langle v, f\rangle| \\
& \geq C\|v\|_{Y^{*}} .
\end{aligned}
$$

Example 1.1. Let's try to solve the 1-dimensional Laplace equation

$$
\begin{cases}-u^{\prime \prime}=f & \text { in }(0,1) \\ u=0 & \text { at } x=0,1\end{cases}
$$

We will investigate solvability in $H_{0}^{1}((0,1))={\overline{C_{c}^{\infty}(0,1)}}^{\|\cdot\|_{H^{1}}}$, where $\|u\|_{H^{1}}^{2}=\left\|u_{L^{2}}^{2}+\right\| u^{\prime} \|_{L^{2}}^{2}$. Recall that $\left(H_{0}^{1}((0,1))\right)^{*}=H^{-1}(0,1)$. Then we have $P u=-u^{\prime \prime}$ with domain $X=$ $H_{0}^{1}((0,1))$ and codomain $Y=H^{-1}(0,1)$.

We claim that if $P u=f$ for some $u \in X$ then $\|u\|_{X} \leq C\|f\|_{Y}$. This means that if $u \in H_{0}^{1}(0,1)$ satisfies the equation $-u^{\prime \prime}=f$, then $\|u\|_{H^{1}} \leq C\|f\|_{H^{-1}}$.

Proof. To prove this bound, it suffices by density to consider $u \in C_{c}^{\infty}((0,1))$. Multiply both sides by u and integrate:

$$
\int f u d x=\int-u^{\prime \prime} u d x
$$

Since $u \in C_{c}^{\infty}((0,1))$ there are no boundary terms. So we may integrate by parts.

$$
=\int\left(u^{\prime}\right)^{2} d x
$$

But how about $\|u\|_{L^{2}}$? Use the fact that u vanishes on the boundary:

$$
u(x)=\int_{0}^{x} u^{\prime}(x) d x
$$

Then for any $x \in(0,1)$, we can say

$$
|u(x)| \leq \int_{0}^{1}\left|u^{\prime}\left(x^{\prime}\right)\right| d x^{\prime} \stackrel{\text { Cauchy-Schwarz }}{\leq}\left\|u^{\prime}\right\|_{L^{2}}^{2}
$$

We now have that

$$
\begin{aligned}
\|u\|_{H^{1}}^{2} & \leq C|\langle f, u\rangle| \\
& \leq C\|f\|_{H^{-1}}\|u\|_{H^{1}} .
\end{aligned}
$$

Cancelling one factor of $\|u\|_{H^{1}}$ on each side gives $\|u\|_{H^{1}} \leq C\|f\|_{H^{-1}}$.
Combined with proposition 1 gives us that if $-u^{\prime \prime}=0$ and $u \in H_{0}^{1}((0,1))$, then $u=0$. To use proposition 2, we need to compute P^{*} :

$$
\left\langle P^{*} v, u\right\rangle=\langle v, P u\rangle \quad \forall v \in\left(H^{-1}\right)^{*}, u \in H_{0}^{1} .
$$

Note that by reflexivity of $H_{0}^{1},\left(H^{-1}\right)^{*}=H_{0}^{1}$. Let's write this out:

$$
\langle v, P u\rangle=\int_{0}^{1} v\left(-u^{\prime \prime}\right) d x
$$

To use integration by parts, do another density argument.

$$
\begin{aligned}
& =\int_{0}^{1} v^{\prime} u^{\prime} d x \quad\left(v \in H_{0}^{1}\right) \\
& =\int_{0}^{1}-v^{\prime \prime} u d x \quad\left(u \in H_{0}^{1}\right) \\
& =\left\langle P^{*} v, u\right\rangle .
\end{aligned}
$$

This tells us that $P^{*} v=-v^{\prime \prime}$ with domain $Y^{*}=H_{0}^{1}((0,1))$ and codomain $X^{*}=H_{0}^{-1}((0,1))$, so the problem is self-dual. So we get existence: for all $f \in H^{-1}$, there is a $u \in H_{0}^{1}$ such that $P u=f$.

This is a pretty high-powered approach that works for a variety of problems. To prove quantitative estimates, we will in general use Poincaré inequlities.

1.2 Approximation by smooth functions and smooth partition of unity

There are two main tools we will use: convolution and mollifiers.
Lemma 1.1. Let φ be smooth, compactly supported, and have $\int \varphi d x=1$. Let $u \in L^{p}\left(\mathbb{R}^{d}\right)$ with $1 \leq p<\infty$. Denote mollifiers $\varphi_{\varepsilon}(x)=\frac{1}{\varepsilon^{d}} \varphi(x / \varepsilon)\left(\right.$ so $\left.\int \varphi_{\varepsilon}\right)$. Then

$$
\left\|\varphi_{\varepsilon} u-u\right\|_{L^{p}} \xrightarrow{\varepsilon \rightarrow 0} 0,
$$

where $\varphi_{\varepsilon} * u=\int \varphi_{\varepsilon}(x-y) u(y) d y$.

Proof. The key ingredient is the continuity of the translation operator on L^{p}. Define for $z \in \mathbb{R}^{d}$ and $u \in L^{p}$ the translation operator $\tau_{z} u(x)=u(x-z)$. Then

$$
\lim _{|z| \rightarrow 0}\left\|\tau_{z} u-u\right\|_{L^{p}}=0
$$

which you can check. Now

$$
\varphi_{\varepsilon} * u(x)-u(x)=\int u(x-y) \varphi_{\varepsilon}(y) d y-u(x)
$$

Since $\int \varphi_{\varepsilon}=1$,

$$
=\int(u(x-y)-u(x)) \varphi_{\varepsilon}(y) d y .
$$

Taking the L^{p} norm, we have

$$
\begin{aligned}
\left\|\varphi_{\varepsilon} * u(x)-u(x)\right\|_{L^{p}} & =\left\|\int(u(x-y)-u(x)) \varphi_{\varepsilon}(y) d y\right\|_{L^{p}} \\
& \leq \int\|u(\cdot-y)-u(\cdot)\|_{L^{p}}\left|\varphi_{\varepsilon}(y)\right| d y
\end{aligned}
$$

Since φ has compact support, $\operatorname{supp} \varphi_{\varepsilon} \rightarrow\{0\}$ as $\varepsilon \rightarrow\{0\}$. Thus, the integrand goes to 0 as $\varepsilon \rightarrow 0$. So we may apply the dominated convergence theorem to get

$$
\xrightarrow{\varepsilon \rightarrow 0} 0 \text {. }
$$

This approximation is useful because $\varphi_{\varepsilon} * u$ is smooth.
Another useful tool is a smooth partition of unity:
Lemma 1.2. Suppose $\left\{U_{\alpha}\right\}_{\alpha \in A}$ be an open covering of U in \mathbb{R}^{d}. There exists a smooth partition of unity $\left\{\chi_{\alpha}\right\}_{\alpha \in A}$ on U subordinate to $\left\{U_{\alpha}\right\}_{\alpha \in A}$, i.e.

1. $\sum_{\alpha} \chi_{\alpha}(x)=1$ on U and for all $x \in U$ there exist only finitely many nonzero $\chi_{\alpha}(x)$
2. $\operatorname{supp} \chi_{\alpha} \subseteq U_{\alpha}$
3. χ_{α} is smooth.

Proof. Start from a continuous partition of unity and apply the previous lemma to approximate by smooth functions.

