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1 A Priori Estimates and Approximation Theorems

1.1 Relationship between a priori estimates, existence, and uniqueness

Last time, we were investigating the question “Why study Sobolev spaces as Banach
spaces?” We made a digression into functional analysis:

If X and Y are Banach spaces and P : X → Y is bounded and linear, we had 2
concerns:

• (Existence) Given f ∈ T , does there exists a u ∈ X such that Pu = f?

• (Uniqueness) Given u ∈ X such that Pu = 0, does u = 0?

These two problems are related to each other by duality.

Remark 1.1. Here is a concrete thing to keep in mind: Often, we prove a priori estimates
for a PDE, i.e. if u ∈ X with Pu = f , then ‖u‖X ≤ C‖f‖Y .

Proposition 1.1. Let X,Y be Banach spaces, and let P : X → Y be a bounded, linear
operator. Denote by P ∗ : Y ∗ → X∗ the adjoint of P , i.e. 〈v, Pu〉 = 〈P ∗v, u〉 for all
u ∈ X, v ∈ Y ∗. Suppose there exists a constant C > 0 such that ‖u‖X ≤ C‖Pu‖Y for all
u ∈ X. Then

1. (Uniqueness for Pu = f) If u ∈ X and Pu = 0, then u = 0.

2. (Existence for P ∗v = g) For all g ∈ X∗, there exists a v ∈ Y ∗ such that P ∗v = g and
‖v‖Y ∗ ≤ C‖g‖X∗.

Proof. Here is the proof of 2, via the Hahn-Banach theorem. We want to find v ∈ Y ∗

such that P ∗v = g, which is equivalent to 〈P ∗v, u〉 = 〈g, u〉 for all u ∈ X. The left side is
〈v, Pu〉, so we will start with a subspace of elements of the form Pu.

Define ` : P (X)→ R by the relation

`(Pu) = 〈g, u〉.
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Note that since P is injective, this ` is well-defined. This is bounded because or ‖Pu‖Y ≤ 1,

`(Pu)| = |〈g, u〉| ≤ ‖g‖X∗‖u‖X
≤ C‖g‖X∗‖Pu‖Y
≤ C‖g‖X∗

So Hahn-Banach says that there is a v ∈ Y ∗ such that

〈v, Pu〉 = `(pu) = 〈g, u〉 ∀u ∈ X

and ‖v‖Y ∗ ≤ C‖g‖X∗ .

What about existence for the original problem Pu = f? Let us take an easy way out
and assume that X is reflexive (X → (X∗)∗ sending u 7→ (u 7→ 〈v, u〉) is an isomorphism).

Proposition 1.2. Let X,Y be Banach spaces, and let P : X → Y be a bounded, linear
operator. Suppose ‖vY ∗‖ ≤ C‖P ∗v‖X∗. Then

1. (Uniqueness for P ∗v = g) If v ∈ Y ∗ and P ∗v = 0, then v = 0.

2. (Existence for Pu = f) For all f ∈ Y , there exists a u ∈ X such that Pu = f and
‖u‖X ≤ C‖f‖Y .

Proof. Same as before. Construct u ∈ X by constructing a bounded linear functional on
X∗ (because X = (X∗)∗ by reflexivity.

Remark 1.2. All Sobolev spaces W k,p
0 (U) with 1 < p <∞ are reflexive.

Remark 1.3.
(ranP )⊥ = kerP ∗, kerP =⊥ (ranP ∗).

Here, we mean annihilators.

Definition 1.1. Given U ⊆ Y , the annihilator of U is U⊥ = {v ∈ Y ∗ : 〈v, f〉 = 0∀f ∈ U}.
Given V ⊆ X∗, the annihilator of U is U⊥ = {u ∈ X : 〈g, u〉 = 0 ∀g ∈ V }.

As a consequence, if kerP ∗ = {0}, then by Hahn-Banach,

(ranP )⊥ = {0} ⇐⇒ ranP = Y.

In the finite dimensional case, ranP = ranP . Therefore, we get the well-known fact
from linear algebra concerning the solvability of the problem Ax = b with A a possibly
non-square matrix:

(for all b, there exists an x such that Ax = b) ⇐⇒ (A∗y = 0 =⇒ y = 0),

(for all c, there exists an y such that A∗y = c) ⇐⇒ (Ax = 0 =⇒ x = 0).

However, in the infinite dimensional case, ranP = ranP , so we can think of the annihilator
as measuring how close these are.
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Remark 1.4 (Qualitative vs quantitative). There is no loss of generality in deriving exis-
tence for Pu = f from the quantitative bound ‖v‖Y ∗ ≤ C‖P ∗v‖X∗ .

Proposition 1.3. Let X,Y be Banach spaces and P : X → Y be a bounded linear operator.
If P (X) = T , then there exists some C > 0 such that ‖v‖Y ∗ ≤ C‖P ∗v‖X∗.

Proof. By the open mapping theorem, P (BX), the image of the unit ball in X, is open and
contains the origin. So there exists a C > 0 such that P (BX) ⊇ cBY . Then

‖P ∗v‖X∗ = sup
u:‖u‖X≤1

|〈P ∗v, u〉|

= sup
u∈BX

|〈v, Pu〉|

= sup
f∈P (BX)

|〈v, f〉|

≥ sup
f∈cBY

|〈v, f〉|

≥ C‖v‖Y ∗ .

Example 1.1. Let’s try to solve the 1-dimensional Laplace equation{
−u′′ = f in (0, 1)

u = 0 at x = 0, 1.

We will investigate solvability in H1
0 ((0, 1)) = C∞c (0, 1)

‖·‖H1
, where ‖u‖2H1 = ‖u2L2 +‖u′‖2L2 .

Recall that (H1
0 ((0, 1)))∗ = H−1(0, 1). Then we have Pu = −u′′ with domain X =

H1
0 ((0, 1)) and codomain Y = H−1(0, 1).

We claim that if Pu = f for some u ∈ X then ‖u‖X ≤ C‖f‖Y . This means that if
u ∈ H1

0 (0, 1) satisfies the equation −u′′ = f , then ‖u‖H1 ≤ C‖f‖H−1 .

Proof. To prove this bound, it suffices by density to consider u ∈ C∞c ((0, 1)). Multiply
both sides by u and integrate: ∫

fu dx =

∫
−u′′u dx

Since u ∈ C∞c ((0, 1)) there are no boundary terms. So we may integrate by parts.

=

∫
(u′)2 dx.

But how about ‖u‖L2? Use the fact that u vanishes on the boundary:

u(x) =

∫ x

0
u′(x) dx.
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Then for any x ∈ (0, 1), we can say

|u(x)| ≤
∫ 1

0
|u′(x′)| dx′

Cauchy-Schwarz
≤ ‖u′‖2L2 .

We now have that

‖u‖2H1 ≤ C|〈f, u〉|
≤ C‖f‖H−1‖u‖H1 .

Cancelling one factor of ‖u‖H1 on each side gives ‖u‖H1 ≤ C‖f‖H−1 .

Combined with proposition 1 gives us that if −u′′ = 0 and u ∈ H1
0 ((0, 1)), then u = 0.

To use proposition 2, we need to compute P ∗:

〈P ∗v, u〉 = 〈v, Pu〉 ∀v ∈ (H−1)∗, u ∈ H1
0 .

Note that by reflexivity of H1
0 , (H−1)∗ = H1

0 . Let’s write this out:

〈v, Pu〉 =

∫ 1

0
v(−u′′) dx

To use integration by parts, do another density argument.

=

∫ 1

0
v′u′ dx (v ∈ H1

0 )

=

∫ 1

0
−v′′u dx (u ∈ H1

0 )

= 〈P ∗v, u〉.

This tells us that P ∗v = −v′′ with domain Y ∗ = H1
0 ((0, 1)) and codomainX∗ = H−10 ((0, 1)),

so the problem is self-dual. So we get existence: for all f ∈ H−1, there is a u ∈ H1
0 such

that Pu = f .
This is a pretty high-powered approach that works for a variety of problems. To prove

quantitative estimates, we will in general use Poincaré inequlities.

1.2 Approximation by smooth functions and smooth partition of unity

There are two main tools we will use: convolution and mollifiers.

Lemma 1.1. Let ϕ be smooth, compactly supported, and have
∫
ϕdx = 1. Let u ∈ Lp(Rd)

with 1 ≤ p <∞. Denote mollifiers ϕε(x) = 1
εd
ϕ(x/ε) (so

∫
ϕε). Then

‖ϕεu− u‖Lp
ε→0−−−→ 0,

where ϕε ∗ u =
∫
ϕε(x− y)u(y) dy.
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Proof. The key ingredient is the continuity of the translation operator on Lp. Define for
z ∈ Rd and u ∈ Lp the translation operator τzu(x) = u(x− z). Then

lim
|z|→0

‖τzu− u‖Lp = 0,

which you can check. Now

ϕε ∗ u(x)− u(x) =

∫
u(x− y)ϕε(y) dy − u(x)

Since
∫
ϕε = 1,

=

∫
(u(x− y)− u(x))ϕε(y) dy.

Taking the Lp norm, we have

‖ϕε ∗ u(x)− u(x)‖Lp =

∥∥∥∥∫ (u(x− y)− u(x))ϕε(y) dy

∥∥∥∥
Lp

≤
∫
‖u(· − y)− u(·)‖Lp |ϕε(y)| dy

Since ϕ has compact support, suppϕε → {0} as ε → {0}. Thus, the integrand goes to 0
as ε→ 0. So we may apply the dominated convergence theorem to get

ε→0−−−→ 0.

This approximation is useful because ϕε ∗ u is smooth.
Another useful tool is a smooth partition of unity:

Lemma 1.2. Suppose {Uα}α∈A be an open covering of U in Rd. There exists a smooth
partition of unity {χα}α∈A on U subordinate to {Uα}α∈A, i.e.

1.
∑

α χα(x) = 1 on U and for all x ∈ U there exist only finitely many nonzero χα(x)

2. suppχα ⊆ Uα

3. χα is smooth.

Proof. Start from a continuous partition of unity and apply the previous lemma to approx-
imate by smooth functions.
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